Question		\quad Answer$V=20000 \mathrm{e}^{-02 t}$when $t=1, V=16374.615 \ldots$so car loses $(£) 3600$	Marks B1 B1 [2]	Guidance	
1	(i)			(soi) art 16400 condone no $£$, must be to nearest $£ 100$	or B2 for correct answer
	(ii)	$\begin{aligned} & \text { When } t=1, V=13000 \\ & \Rightarrow \quad 13000=15000 \mathrm{e}^{-k} \\ & \Rightarrow \quad-k[\ln \mathrm{e}]=\ln (13000 / 15000) \\ & \Rightarrow k=0.1431 \ldots=0.143(3 \mathrm{sf}) * \end{aligned}$	M1 M1 A1 [3]	taking lns correctly oe e.g. $\ln 13000=\ln 15000-k[\operatorname{lne}]$ cao NB AG must show some working if $4^{\text {th }}$ d.p. not shown	If $k=0.143$ verified ,e.g. $15000 \mathrm{e}^{-0143}=13001[.31 \ldots]$, SCB1 need not have substituted for V and A e.g. $k=-\ln (13000 / 15000)=0.143$
	(iii)	$\begin{aligned} & 15000 \mathrm{e}^{-0.143 t}=20000 \mathrm{e}^{-02 t} \\ & \Rightarrow \quad(15000 / 20000)=\mathrm{e}^{(0143-02) t} \\ & \Rightarrow \quad t=\ln 0.75 /-0.057=5.05 \text { years } \\ & \quad \text { so after } 5 \text { years } \end{aligned}$	M1* M1dep A1 [3]	must be correct, but could use a more accurate value for k dep * cao accept answers in the range $5-5.1$	If M0, SCB1 for 5-5.1 years from correct calculations for each car, rot e.g. $t=5, £ 7358$ (Brian), $£ 7338$ (Kate) or ($£ 7334$ with more accurate k) o.e. e.g. $\ln 15000-0.143 t=\ln 20000-0.2 t$

Question		Answer	Marks	Guidance	
2	(i)	$\begin{aligned} & \theta=a-b \mathrm{e}^{-k t} \\ & \text { When } t=0, \theta=15 \Rightarrow 15=a-b \\ & \text { When } t=\infty, \theta=100 \Rightarrow 100=a \\ & \Rightarrow \quad b=85 \\ & \text { When } t=1, \theta=30 \Rightarrow 30=100-85 \mathrm{e}^{-k} \\ & \Rightarrow \quad \mathrm{e}^{-k}=70 / 85 \\ & \Rightarrow \quad-k=\ln (70 / 85)=-0.194(156 \ldots) \\ & \Rightarrow \quad k=0.194 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { B1 } \\ \text { A1cao } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \text { [6] } \end{gathered}$	$\begin{aligned} & 1=a-b \\ & a=100 \\ & b=85 \\ & 3=a-b \mathrm{e}^{-k} \end{aligned}$ Re-arranging and taking lns 0.19 or better, or $-\ln (70 / 85)$ oe	must have $\mathrm{e}^{0}=1$ (need not substitute for a and b) allow $-k=\ln [(a-30) / b]$ ft on a, b mark final ans
	(ii)	$\begin{aligned} & 80=100-85 \mathrm{e}^{-0.194 t} \\ & \Rightarrow \quad \mathrm{e}^{-0.194 t}=20 / 85 \\ & \Rightarrow \quad t=-\ln (4 / 17) / 0.194=7.45(\mathrm{~min}) \end{aligned}$	M1 A1 [2]	ft their values for a, b and k art 7.5 or 7 min 30 s or better	but must substitute values

| 3 | (i) | When $t=2, r=20\left(1-\mathrm{e}^{-04}\right)=6.59 \mathrm{~m}$
 $\mathrm{~d} r / \mathrm{d} t=-20 \times\left(-0.2 \mathrm{e}^{-02 t}\right)$
 $=4 \mathrm{e}^{-02 t}$ | M1A1
 M 1 | 6.6 or art 6.59
 $-0.2 \mathrm{e}^{-02 t}$ soi |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

5			
$\begin{aligned} & A=\pi \\ & r^{2} \Rightarrow \text { When } r=2, \mathrm{~d} A / \mathrm{d} r=4 \pi, \mathrm{~d} A / \mathrm{d} t=1 \end{aligned}$	$\begin{aligned} & \text { M1A1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 2 \pi r \\ & \text { soi (at any stage) } \end{aligned}$	M1A0 if incorrect notation, e.g. $\mathrm{d} y / \mathrm{d} x, \mathrm{~d} r / \mathrm{d} A$, if seen. $2 r$ is M1A0 must be $\mathrm{d} A / \mathrm{d} r$ (soi) and $\mathrm{d} A / \mathrm{d} t$
$\mathrm{d} A / \mathrm{d} r=\frac{\mathrm{d} A}{\mathrm{~d} t}=\frac{\mathrm{d} A}{\mathrm{~d} r} \frac{\mathrm{~d} r}{\mathrm{~d} t}$			any correct form stated with relevant variables, e.g.
$2 \pi r \quad \frac{}{\mathrm{~d} t}=\frac{\mathrm{a}}{\mathrm{~d} r} \cdot \frac{\mathrm{a}}{\mathrm{~d} t}$	M1	chain rule (o.e)	$\frac{\mathrm{d} r}{\mathrm{~d} t}=\frac{\mathrm{d} r}{\mathrm{~d} A} \cdot \frac{\mathrm{~d} A}{\mathrm{~d} t}, \frac{\mathrm{~d} r}{\mathrm{~d} t}=\frac{\mathrm{d} r}{\mathrm{~d} A} / \frac{\mathrm{d} t}{\mathrm{~d} A}$, etc.
$\begin{array}{ll} \Rightarrow & 1=4 \pi . \mathrm{d} / \mathrm{d} t \\ \Rightarrow & \mathrm{~d} r / \mathrm{d} t=1 / 4 \pi=0.0796(\mathrm{~mm} / \mathrm{s}) \end{array}$	$\begin{aligned} & \text { A1 } \\ & \text { [5] } \end{aligned}$	cao: 0.08 or better condone truncation	allow $1 / 4 \pi$ but mark final answer

6(i)	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & {[3]} \end{aligned}$	shape of $y=\mathrm{e}^{x}-1$ and through O shape of $y=2 \mathrm{e}^{-x}$ through (0, 2) (not (2,0))	for first and second B1s graphs must include negative x values condone no asymptote $y=-1$ shown asymptotic to x-axis (shouldn't cross)
$\begin{array}{ll} \text { (ii) } & \mathrm{e}^{x}-1=2 \mathrm{e}^{-x} \\ \Rightarrow & \mathrm{e}^{2 x}-\mathrm{e}^{x}=2 \\ \Rightarrow & \left(\mathrm{e}^{x}\right)^{-}-\mathrm{e}^{x}-2=0 \\ \Rightarrow & \left(\mathrm{e}^{x}-2\right)\left(\mathrm{e}^{x}+1\right)=0 \\ \Rightarrow & \mathrm{e}^{x}=2 \quad(\text { or }-1) \\ \Rightarrow & x=\ln 2 \\ \Rightarrow & y=1 \end{array}$	M1 M1 B1 B1 B1cao [5]	```equating re-arranging into a quadratic in \(\mathrm{e}^{x}=0\) stated www www wWW```	allow one error but must have $\mathrm{e}^{2 x}=\left(\mathrm{e}^{x}\right)^{2}$ (soi) award even if not from quadratic method (i.e. by 'fitting') provided www allow for unsupported answers, provided www need not have used a quadratic, provided www

$\text { 7(i) } \begin{aligned} & h=a-b \mathrm{e}^{-k t} \Rightarrow a=10.5 \\ & \\ & \\ & \text { (their) } a-b \mathrm{e}^{0}=0.5 \\ & \Rightarrow b=10 \end{aligned}$	B1 M1 A1cao [3]	a need not be substituted	
$\begin{array}{ll} \text { (ii) } & h=10.5-10 \mathrm{e}^{-k t} \\ & \text { When } t=8, h=10.5-10 \mathrm{e}^{-8 k}=6 \\ \Rightarrow & 10 \mathrm{e}^{-8 k}=4.5 \\ \Rightarrow & -8 k=\ln 0.45 \\ \Rightarrow & k=\ln 0.45 /(-8)=0.09981 \ldots=0.10 \end{array}$	M1 M1 A1 [3]	ft their a and b (even if made up) taking lns correctly on a correct rearrangement - $\mathrm{ft} a, b$ if not eased cao (www) but allow 0.1	allow M1 for $a-b \mathrm{e}^{-8 k}=6$ allow a and b unsubstituted allow their 0.45 (or 4.5) to be negative

