	Question		Answer		Guidance		
1	(i)		$V = 20000 e^{-0.2t}$	B1	(soi) art 16400		
			when $t = 1$, $V = 16374.615$				
			so car loses (£)3600	B1	condone no £, must be to nearest £100	or B2 for correct answer	
				[2]			
	(ii)		When $t = 1$, $V = 13000$	M1		If $k = 0.143$ verified ,e.g.	
			$\Rightarrow 13000 = 15000 e^{-k}$			$15000 e^{-0.143} = 13001[.31], SCB1$	
			$\Rightarrow -k [\ln e] = \ln(13000/15000)$	M1	taking lns correctly	need not have substituted for V and A	
					oe e.g. $\ln 13000 = \ln 15000 - k$ [lne]		
			$\Rightarrow k = 0.1431 = 0.143 (3sf) *$	A1	cao NB AG must show some working if 4 th d.p. not shown	e.g. $k = -\ln(13000/15000) = 0.143$	
				[3]			
	(iii)		$15000e^{-0.143t} = 20000e^{-0.2t}$	M1*	must be correct, but could use a more	If M0, SCB1 for $5 - 5.1$ years from	
					accurate value for k	correct calculations for each car, rot	
						e.g. $t = 5$, $\pm/358$ (Brian), $\pm/338$ (Kate) or (±7334 with more accurate k)	
			$\Rightarrow (15000/20000) = e^{(0\ 143 - 0\ 2)t}$	M1dep	dep *	o.e. e.g. $\ln 15000 - 0.143t = \ln 20000 - 0.2t$	
			\Rightarrow $t = \ln 0.75 / -0.057 = 5.05$ years	A1	cao accept answers in the range $5-5.1$		
			so after 5 years				
				[3]			

Question		n	Answer	Marks	Guidance		
2	(i)		$\theta = a - b \mathrm{e}^{-kt}$				
			When $t = 0$, $\theta = 15 \Rightarrow 15 = a - b$	M 1	1 = a - b	must have $e^0 = 1$	
			When $t = \infty$, $\theta = 100 \Rightarrow 100 = a$	B 1	a = 100		
			$\Rightarrow b = 85$	A1cao	b = 85		
			When $t = 1$, $\theta = 30 \implies 30 = 100 - 85e^{-k}$	M 1	$3 = a - b e^{-k}$	(need not substitute for a and b)	
			\Rightarrow e ^{-k} = 70/85				
			\Rightarrow $-k = \ln (70/85) = -0.194(156)$	M1	Re-arranging and taking lns	allow $-k = \ln[(a - 30)/b]$ ft on <i>a</i> , <i>b</i>	
			$\Rightarrow k = 0.194$	A1	0.19 or better, or -ln (70/85) oe	mark final ans	
				[6]			
	(ii)		$80 = 100 - 85 e^{-0.194t}$	M1	ft their values for a, b and k	but must substitute values	
			$\Rightarrow e^{-0.194t} = 20/85$				
			\Rightarrow $t = -\ln(4/17) / 0.194 = 7.45 \text{ (min)}$	A1	art 7.5 or 7 min 30s or better		
				[2]			

3	(i)	When $t = 2$, $r = 20(1 - e^{-0.4}) = 6.59 \text{ m}$	M1A1	6.6 or art 6.59	
		$dr/dt = -20 \times (-0.2e^{-0.2t})$	M1	$-0.2e^{-0.2t}$ soi	
		$=4e^{-0.2t}$		0.4	
		When $t = 2$, $dr/dt = 2.68$	Al	2.7 or art 2.68 or $4e^{-0.4}$	mark final answer
			[4]		
	(ii)	$A = \pi r^2$	M1	attempt to differentiate πr^2	or differentiating $400\pi(1-e^{-0.2t})^2$ M1
		\Rightarrow dA/dr = $2\pi r$ (= 41.428)	A1	$dA/dr = 2\pi r (\text{not } dA/dt, dr/dA \text{ etc})$	$dA/dt = 400\pi . 2(1 - e^{-0.2t}) . (-0.2e^{-0.2t}) A1$
		$dA/dt = (dA/dr) \times (dr/dt)$	M1	(o.e.) chain rule expressed in	substitute $t = 2$ into correct dA/dt M1
		$=41.428 \times 2.68$		terms of their A, r or implied	(Could use another letter for <i>A</i>)
		$= 111 \text{ m}^2/\text{hr}$	A1	110 or art 111	
			[4]		

4	(i)	When $t = 0$, $P = 7 - 2 = 5$, so 5 (million) In the long term $e^{-kt} \rightarrow 0$ So long-term population is 7 (million)	B1 M1 A1 [3]	allow substituting a large number for <i>t</i> (for both marks)	allow 7 unsupported
	(ii)	$P = 7 - 2e^{-kt}$ When $t = 1, P = 5.5$ $\Rightarrow 5.5 = 7 - 2e^{-k}$ $\Rightarrow e^{-k} = (7 - 5.5)/2 = 0.75$ $\Rightarrow -k = \ln((7 - 5.5)/2)$ $\Rightarrow k = 0.288 (3 \text{ s.f.})$	M1 M1 A1 [3]	re-arranging and anti-logging – allow 1 slip (e.g. arith of 7 – 5.5, or <i>k</i> for – <i>k</i>) or $\ln 2 - k = \ln 1.5$ o.e. 0.3 or better allow $\ln(4/3)$ or $-\ln(3/4)$ if final ans	but penalise negative lns, e.g. $\ln(-1.5) = \ln(-2) - k$ rounding from a correct value of k = 0.2876820725, penalise truncation, and incorrect work with negatives

5 $A = \pi$ $r^{2} \Rightarrow \text{ When } r = 2, dA/dr = 4\pi, dA/dt = 1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ A	1A1 $2\pi r$ soi (at any stage)1chain rule (o.e)1cao: 0.08 or better condone truncation	M1A0 if incorrect notation, e.g. dy/dx , dr/dA , if seen. $2r$ is M1A0 must be dA/dr (soi) and dA/dt any correct form stated with relevant variables , e.g. $\frac{dr}{dt} = \frac{dr}{dA} \cdot \frac{dA}{dt}$, $\frac{dr}{dt} = \frac{dr}{dA} / \frac{dt}{dA}$, etc. allow $1/4\pi$ but mark final answer
--	--	---

	\ /	Di		for first and second B1s graphs must include negative x values
6(i)		BI	shape of $y = e^x - 1$ and through O	condone no asymptote $y = -1$ shown
	2	B1	shape of $y = 2e^{-x}$	asymptotic to x-axis (shouldn't cross)
		B1	through (0, 2) (not (2,0))	
		[3]		
(ii)	$e^x - 1 = 2e^{-x}$	M1	equating	
⇒	$e^{2x} - e^x = 2$			
\Rightarrow	$(e^{x})^{2} - e^{x} - 2 = 0$	M1	re-arranging into a quadratic in $e^x = 0$	allow one error but must have $e^{2x} = (e^x)^2$ (soi)
\Rightarrow	$(e^{x}-2)(e^{x}+1)=0$			
\Rightarrow	$e^{x} = 2$ (or -1)	B1	stated www	award even if not from quadratic method (i.e. by 'fitting') provided www
\rightarrow	$r = \ln 2$	B1	www	allow for unsupported answers, provided www
	$x = \frac{1}{2}$	B1cao	www	need not have used a quadratic, provided www
	y = 1	[5]		

7(i)	$h = a - be^{-kt} \Rightarrow a = 10.5$ (their) $a - be^{0} = 0.5$ $\Rightarrow b = 10$	B1 M1 A1cao [3]	<i>a</i> need not be substituted	
(ii) ⇒	$h = 10.5 - 10e^{-kt}$ When $t = 8$, $h = 10.5 - 10e^{-8k} = 6$ $10e^{-8k} = 4.5$	M1	ft their <i>a</i> and <i>b</i> (even if made up)	allow M1 for $a - be^{-8k} = 6$
\Rightarrow	$-8k = \ln 0.45$	M1	taking lns correctly on a correct re- arrangement - ft <i>a</i> , <i>b</i> if not eased	allow a and b unsubstituted allow their 0.45 (or 4.5) to be negative
\Rightarrow	$k = \ln 0.45/(-8) = 0.09981 = 0.10$	[3]	cao (www) but allow 0.1	